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ABSTRACT 
The hydrodynamic development of non-Newtonian fluid flow in the entrance region of a duct with porous 
walls is examined numerically by solving the modified Navier-Stokes equations. Cases involving blowing, 
suction, and no mass transfer through the walls are considered. Velocity distributions, pressure drops, and 
skin friction coefficients are presents for each case. A definite concavity is found in the velocity profile near 
the duct entrance for all cases. Results for Newtonian fluids are compared with previous studies in which 
boundary-layer theory was used. In the region away from the entrance it is found that the present results 
are in good agreement with previous works. In the region close to the entrance, or in the case of suction, 
boundary-layer theory is shown to be inappropriate. 
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NOMENCLATURE 

b half-duct width 

Cf wall skin friction coefficient, 

K consistency index 
L duct length 
n flow index of power-law fluid 
p pressure 
P dimensionless pressure, p/ρu2o 
Re Reynolds number, [ρu2o-n.(2b)n]/K. 
u dimensional axial velocity 
U dimensionless axial velocity, u/u0 
v dimensional transverse velocity 
V dimensionless transverse velocity, v/u0 
x dimensional axial coordinate 
Y dimensionless transverse coordinate, y/b 

y dimensional transverse coordinate 
Y dimensionless transverse coordinate, y/b 

Greek 
zxy shear stress on a fluid element 
µa apparent viscosity 
η dimensionless apparent viscosity 

Superscript 
- average 

Subscripts 
c centreline condition 
o inlet condition 
w wall conditions 

INTRODUCTION 
Due to the importance of non-Newtonian fluid in the processing of molten plastics, polymers, 
etc., considerable research efforts have been conducted to understand the behaviour of these 
fluids. In the flow of a fluid through a channel, the velocity distribution undergoes a development 
from some initial profile at the inlet to a fully-developed profile at locations far downstream. 
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Correspondingly, the pressure gradient in the region of flow development will differ from that 
of a fully developed flow. Therefore, it is of considerable interest to determine the detailed nature 
of velocity development in the entrance region. 

Numerous papers are found in the literature which deal with analytical, numerical, and 
experimental studies of entrance flow for non-Newtonian fluids. The analytical solutions for the 
velocity profiles, obtained by the linearization of the momentum equations, is given by Langhaar1 

for the circular tube. Sparrow et al.2 extended this approach to calculate the laminar flow 
development and pressure drops in the entrance region of tubes and ducts. Collins and 
Schowalter3 employed a perturbation technique to study the flow development of non-Newtonian 
fluids in a channel. The Karman-Pohlhausen momentum integral method was first applied to the 
entrance-region problem by Schiller4. Gupta5 applied a similar approach to the case of 
pseudoplastic fluids. A variational technique was used by Tomita6 to investigate the 
entrance-region flow of power-law fluids at low Reynolds numbers. 

A further approach is to obtain numerical solutions by finite difference techniques. Duda and 
Vrentas7 used this method to study the entrance-region flow of a Powell-Eyring non-Newtonian 
fluid. The inlet region for laminar flow in porous pipes with small rates of injection or suction 
has been analysed numerically by Hornbeck et al.8. 

While boundary layer theory has been extensively used for entrance flow problems, its 
assumptions are invalid near the entrance of the tube. Solutions of the full Navier-Stokes 
equations near the entrance of a tube differ from the boundary layer solutions. The numerical 
solutions of the Navier-Stokes equations in the entrance region have been obtained by Wang 
and Longwell9, McDonald et al.10, and Koyari et al.11; but these authors did not consider 
blowing or suction and they did not consider non-Newtonian fluids. 

In this paper we investigate the hydrodynamic development of a power-law non-Newtonian 
fluid in a duct with wall injection and suction. Since the boundary-layer assumptions are not 
valid near the entrance region, the modified Navier-Stokes equations are solved numerically. 
The modified equations used for power-law liquid are different from the conventional 
Navier-Stokes equations by that the viscosity of a power-law liquid is dependent on the shear 
rate but the Newtonian viscosity is independent of the shear rate12. The relation of shear stress 
to rate-of-shear-strain of the power-law non-Newtonian fluids is: 

where µa is the apparent viscosity, K the consistency index, and n the flow index. For n = 1, the 
above equation reduces to the Newtonian case, i.e. µa=K = constant. For n other than 1 and 
at a given ratio of shear stress to rate-of-shear-strain, the larger flow index n, the greater grows 
the apparent viscosity. Results are presented for a Reynolds number of 100. These results are 
not currently available in the existing literature. 

ANALYSIS 
Mathematical formulation 

Consider steady, laminar isothermal flow of an incompressible non-Newtonian fluid in the 
entrance region of a plane duct with porous walls. The flow is two-dimensional and is uniform 
at the entrance. The fluid which is injected in is assumed to be identical to the fluid flowing in 
the duct. 

The geometry being considered is shown in Figure 1. The duct width is 2b and a cartesian 
coordinate system with its origin at the inlet is used. The x axis is on the duct centreline, and 
the y axis is normal to the centreline. 
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The dimensionless varibles chosen are: 

The corresponding non-dimensional governing equations are expressed as follows: 
continuity equation: 

X-momentum equation: 

Y-momentum equation: 

where 

Note that for n = 1, the above system reduces to the conventional Navier-Stokes equations 
for a Newtonian fluid. 

Because of symmetry, only the region between the wall (Y = 1) and the centreline (Y=0) need 
to be considered. Non-dimensional boundary conditions employed in the present study are 
described as follows. 
Inlet: U = 1, V=0 (7a) 
Walls: U=0, V=Vw (7b) 
Symmetry axis: ∂U/∂Y=0, V=0 (7c) 

Condition (6a) specifies that the inlet flow is uniform and parallel. In (6b), the no-slip condition 
at the wall and the blowing or suction velocity at the wall are given. For blowing, Vw is defined 
to be negative; for suction, Vw is positive. 
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The boundary condition at the exit is different for blowing and suction13: 
For Vw>0: U=0, ∂V/∂X=0 (7d) 
For V w ≤0: V=0, ∂(U/Ū)/∂X=0 (7e) 
where Ū represents the average dimensionless axial velocity. For Vw> 0, the fluid inside the duct 
is taken out continuously through wall suction, and becomes empty at x/b=L=Re/Vw. The 
flow for x/b>L can be envisioned as a mirror image of that for x/b<L, making x/b=L a plane 
of symmetry. Physically this situation would occur when the duct was open at both ends so 
that the fluid moves axially inward symmetrically about the midplane (x/b=L) of the duct. 
Thus, the boundary condition at x=L is adopted as (7d). For the wall blowing case, fluid is 
injected continuously into the duct. When the flow is fully developed, the axial velocities at exit 
are linearly proportional to the axial distance; this situation is stated in (7e). 

Method of solution 
Because of the elliptic nature of the flow, (3)-(5) are solved using an implicit finite difference 

procedure called SIMPLER (Semi-Implicit Method for Pressure Linked Equations, Revised). 
This method was developed by Patankar14. In this method, the domain is subdivided into a 
number of control volumes, each associated with a grid point, and the governing differential 
equations are integrated over each control volume resulting in a system of algebraic equations 
that can be solved by an iterative technique. All the momentum fluxes across the control surfaces 
are evaluated approximately by the power-law scheme. To avoid checkerboard fields, the 
velocities are stored at staggered locations (Figure 2). The pressure-velocity linkage is resolved 
by a predictor-corrector technique. 

In the present method, the Reynolds number is not necessarily restricted to a small value. 
However, the larger the Reynolds number, the longer is the duct length in order to attain fully 
developed flow. For the sake of saving computational costs, a Reynolds number of 100 is used 
in the present study. Also, the entrance length for a power-law fluid is dependent on the flow 
index n, i.e., the entrance length is longer for a smaller value of n. In the present paper, the 
calculations are performed for n = 0.6, 0.8, 1.0, 1.2, and 1.4. For n=0.6, the entrance length is3 

x/b=0.12 Re; but for blowing, the computational length should be longer. To ensure that the 
solutions are not influenced by the outlet boundary conditions, the computational duct length 
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for Vw< 0 (blowing) is taken as 406. For suction (Vw=0.04), the fluid becomes empty at13 

x/b = 25; therefore, L is set equal to 25b in the case of suction. 
To determine the appropriated grid size in the x-direction, calculations are performed on 

increasingly finer grid sizes. The final distribution chosen is a 50 x 20 non-uniform grid with a 
denser clustering near the wall and centreline, and near the inlet and exit of the duct. The results 
of grid-independency test are presented in Figure 3 in terms of the axial-pressure distribution. 

RESULTS AND DISCUSSION 
Velocity distribution 

In previous studies of entrance region problem, boundary-layer theory was used extensively. 
It is known that this approximation is not valid in the vicinity of the entrance of the duct. 
Figure 4 shows the distributions of the axial velocity at the centreline for a Newtonian fluid, 
with Vw=0. Obviously, the axial diffusion term in the momentum equations cannot be neglected 
in the entrance region. The numerical values obtained from the modified Navier-Stokes solutions 
in the present work and in that by Raithby13 are lesser than approximation by boundary layer 
theory, as shown in Figure 4. However, the trend shows good agreement. 

The velocity gradient near the wall is very large. Therefore, the apparent viscosity of power-law 
non-Newtonian fluid becomes larger as n is increased. To satisfy the continuity equation, the 
axial velocity at the centre of duct should become larger as n increases. Figure 4 also shows this 
trend. For fully developed flow, the theoretical values of the centreline velocity are given as15: 

The above fully developed flow value can be reached only at infinity. The comparison is given 
in Table 7. It is shown that the present results are within 1 % of the fully developed flow values. 

Figure 5 shows the axial velocity distributions at four different locations for Vw=0. It is seen 
that there is a noticeable effect upstream of the entrance and the velocity distribution is concave 
in the central portion. These velocity 'overshoots' have been determined not to be a numerical 
effect, but rather a valid solution9,13. The extent of velocity overshoots ranges from 4% to 6% 
higher than the centre velocities for Vw=0, 4.7% to 5.9% higher for Vw=—0.04, and 3% to 
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Table 1 Comparison of fully-developed centreline 
velocity 

n 

0.6 
0.8 
1 
1.2 
1.4 

1.375 
1.4444 
1.5 
1.5454 
1.583 

Present 
work 

1.374399 
1.442666 
1.496037 
1.540641 
1.580032 

Table 2 Locations of maximum centreline velocity for 
Vw = 0.04 

n 

0.6 
0.8 
1 
1.2 
1.4 

X/Re 

0.0014507 
0.022478 
0.026656 
0.030969 
0.030969 

1.036382 
1.087581 
1.149935 
1.222024 
1.295822 
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7% higher for Vw=0.04. Consequently, according to the continuity, the concavity of velocity 
profile indicates that the centre velocity must be lesser than that of a conventional parabolic-like 
profile. This explains the difference which is shown in Figure 4. As the length is increased, the 
viscous effect near the wall is diffused towards the duct centre and the concavity of velocity 
profile disappears gradually. The profiles which are shown in Figures 5c and 5d are nearly the 
same. It shows that the computational length taken in the calculations is sufficient to include 
fully developed flow. 

The centreline velocity development with wall blowing (Vw= —0.04) is shown in Figure 6. It 
is found that the centreline velocity increases linearly for (x/b)>0.12Re. This is caused by fully 
developed flow in this region. Figure 7 presents axial velocity distributions at different axial 
locations. As before, the concavity of velocity may be noticed by referring to Figures 5a and 7a. 

For the case of wall suction (Vw=0.04), the relatively small amount of fluid being removed 
and the effect of wall shear give rise to an increasing centreline velocity in the vicinity of the 
duct entrance. Thus, the centreline velocity increases to a maximum value, then decreases to 
zero when the duct is empty. Table 2 lists the axial locations of the maximum centreline velocity 
and Figure 8 shows the centreline velocity distribution for various flow index «. It is seen that 
the maximum value of centreline velocity uc is increased as n increases, but there is no general 
rule for the location of maximum uc. 

Figure 9 shows the velocity distributions at various locations for the case of wall suction. In 
Figure 9a, the concavity of velocity profile still can be found near the leading edge, but the shape 
is developing until the maximum value is reached (Figure 9b). After that the velocity decreases 
gradually, because the fluid is removed through the wall, as shown in Figures 9c and 9d. 

Compared with the case of impermeable wall (Vw=0), it can be seen that when the fluid is 
injected into the duct, the volume of fluid is increased and the fluid near the wall speeds up in 
the leading edge region. Hence, the position of maximum velocity is pushed away from wall. 
On the contrary, when fluid is removed from the duct, the fluid slows down and the location 
of maximum velocity is pulled towards the wall. 

Skin friction coefficient 
One of the important tasks in solving entrance region problem is the determination of skin 
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friction coefficient which is defined as: 

Figures 10-12 indicate the distributions of skin friction coefficient along the flow direction. In 
Figure 10, the present solution is compared with a previous study which is based on an integral 
solution of the boundary layer equations16. Good agreement is shown. Since the skin friction 
is a local effect near the wall, the momentum integral technique with a higher order 
approximation of the velocity profiles can yield accurate results as shown in Figure 10. 
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For an impermeable wall (Figure 10), the skin friction coefficient decreases rapidly to a 
minimum, and then approaches a constant value. In the case of wall blowing (Figure 11), the 
volume of fluid inside the duct is increasing; therefore, the skin friction coefficient decreases first 
to minimum, then increases downstream. On the contrary, for wall suction (Figure 12), fluid is 
removed uniformly from the duct, and the skin friction coefficient decreases steadily downstream 
to zero where at that location the fluid is empty. 

Note that, for all cases, a larger value of the flow index n gives rise to a larger skin friction 
coefficient. The reason for this phenomenon is that the apparent viscosity of a power-law 
non-Newtonian fluid is greater for a larger flow index n; therefore, the shear stress at the duct 
wall is larger for a larger n. 

Pressure drop 
In the present study, the dimensionless pressure drop is defined as (po—p)/(1/2.ρu2o), where 

p and po respectively denote the average pressure at each calculated point and at the inlet section. 
The distributions of pressure drop are shown in Figures 13-15 for impermeable wall, wall blowing 
and wall suction, respectively. 

In Figure 13, the pressure drops for an impermeable wall obtained by Doughty and Perkins16 

is given for comparison. The agreement between the present theory and the previous results is 
seen to be good. From the previous discussion, it has been indicated that the centreline velocity 
is greater for a larger flow index n; therefore, the average momentum at the same cross-section 
will be larger. By the conservation of momentum, a larger pressure drop is needed to maintain 
the fluid flow. 

For wall blowing (Figure 14), as more and more fluid is injected into the duct, the net driving 
force in the flow direction must be increased continuously. That is, a larger pressure drop is 
needed to maintain an increased flow rate. The slope of the curve is increased along the flow 
direction. The agreement with previous results is found. That is because, for the blowing case, 
the length for flow to be fully-developed is much shorter, therefore, the entrance effect is small. 

Figure 15 is presented for the case of wall suction. To test the validity of the prediction from 
boundary layer equations near the entrance for walls with blowing or suction, the result of 
Doughty and Perkins16 is shown for comparison with the present results. The discrepancy is 
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found to be large. The Figure clearly shows the necessity of using the modified Navier-Stokes 
equations for these flow situations. From the momentum equations, it is known that the loss of 
momentum should be balanced by the gradients of pressure drop and wall skin friction. This 
also can be proved from Figures 12 and 15. From Figure 12, the wall skin friction is decreased 
gradually. Therefore, the pressure drop is increased to a maximum value and then decreased 
gradually, i.e., the pressure increased at the exit of duct. For small value of flow index n, the 
wall skin friction is small, then the pressure is raised more quickly, therefore, the negative 
pressure gradient can be found in the Figure. 
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CONCLUSION 
A numerical solution for the flow of a power-law fluid in the inlet region of a duct with blowing 
or suction has been obtained by solving the modified Navier-Stokes equations. Results for centre 
line velocity, axial velocity development, skin friction coefficients, and pressure drop are presented 
for a Reynolds number of 100. Cases of impermeable wall and wall with blowing or suction 
have been considered. Comparisons with available results lend support to the findings of the 
present investigation. The solution of boundary layer equations is shown not to be valid near 
the entrance, especially for blowing or suction. A velocity overshoot is found to be present in 
the near inlet region. 
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